Soergel Bimodules and the Shape of Bruhat Intervals

نویسندگان

  • GEORGE MELVIN
  • WILLIAM SLOFSTRA
چکیده

Given an element w of a Coxeter group, let ai(w) be the number of elements less than w in Bruhat order. A theorem of Björner and Ekedahl states that if W is crystallographic, then ai(w) ≤ aj(w) for all 0 ≤ i < j ≤ `(w) − i. Their proof uses the hard Lefschetz property in intersection cohomology. In this note we extend Björner and Ekedahl’s theorem to all Coxeter groups using the hard Lefschetz theorem for Soergel bimodules recently proved by Elias and Williamson. As we explain, the parabolic case remains open.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple Transitive 2-Representations of Soergel Bimodules in Type B2

We prove that every simple transitive 2-representation of the fiat 2-category of Soergel bimodules (over the coinvariant algebra) in type B2 is equivalent to a cell 2-representation. We also describe some general properties of the 2-category of Soergel bimodules for arbitrary finite Dihedral groups.

متن کامل

Hochschild homology of certain Soergel bimodules

The Soergel bimodules were introduced by Soergel in [9, 10] in the context of the infinite-dimensional representation theory of simple Lie algebra and Kazhdan-Lusztig theory. They have nice explicit expression as the tensor products of the rings of polynomials invariant under the action of a symmetric group, tensored over rings of the same form. Moreover, there are various quite different inter...

متن کامل

Equivariant Coherent Sheaves , Soergel Bimnodules , and Categorification of Affine Hecke Algebras

In this thesis, we examine three different versions of "categorification" of the affine Hecke algebra and its periodic module: the first is by equivariant coherent sheaves on the Grothendieck resolution (and related objects), the second is by certain classes on bimodules over polynomial rings, called Soergel bimodules, and the third is by certain categories of constructible sheaves on the affin...

متن کامل

Diagrammatics for Soergel Categories

The monoidal category of Soergel bimodules can be thought of as a categorification of the Hecke algebra of a finite Weyl group. We present this category, when the Weyl group is the symmetric group, in the language of planar diagrams with local generators and local defining relations. Date: February 27, 2009.

متن کامل

A Geometric Model for Hochschild Homology of Soergel Bimodules

An important step in the calculation of the triply graded link theory of Khovanov and Rozansky is the determination of the Hochschild homology of Soergel bimodules for SL(n). We present a geometric model for this Hochschild homology for any simple group G, as equivariant intersection homology of B × Borbit closures in G. We show that, in type A these orbit closures are equivariantly formal for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016